The convergence of artificial intelligence and edge computing promises to be transformative for many industries. Here the rapid pace of innovation in model quantization, a technique that results in faster computation by improving portability and reducing model size, is playing a pivotal role.
Model quantization bridges the gap between the computational limitations of edge devices and the demands of deploying highly accurate models for faster, more efficient, and more cost-effective edge AI solutions. Breakthroughs like generalized post-training quantization (GPTQ), low-rank adaptation (LoRA), and quantized low-rank adaptation (QLoRA) have the potential to foster real-time analytics and decision-making at the point where data is generated.
To read this article in full, please click here
InfoWorld